Abstract
Drought intensity that has increased as a result of human activity and global warming poses a serious danger to agricultural output. The demand for ecologically friendly solutions to ensure the security of the world’s food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. PGPR guarantees the survival of the plant during a drought through a variety of processes including osmotic adjustments, improved phytohormone synthesis, and antioxidant activity, among others and these mechanisms also promote the plant’s development. In addition, new developments in omics technology have improved our understanding of PGPR, which makes it easier to investigate the genes involved in colonizing plant tissue. Therefore, this review addresses the mechanisms of PGPR in drought stress resistance to summarize the most current omics-based and molecular methodologies for exploring the function of drought-responsive genes. The study discusses a detailed mechanistic approach, PGPR-based bioinoculant design, and a potential roadmap for enhancing their efficacy in combating drought stress.
Funder
National Research Foundation of South Africa
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献