Application of Silica Nanoparticles in Combination with Two Bacterial Strains Improves the Growth, Antioxidant Capacity and Production of Barley Irrigated with Saline Water in Salt-Affected Soil

Author:

Alharbi KhadigaORCID,Rashwan EmadeldeenORCID,Mohamed Hossam Hussein,Awadalla AbdelmoniemORCID,Omara Alaa El-DeinORCID,Hafez Emad M.ORCID,Alshaal TarekORCID

Abstract

Exploitation of low-quality water or irrigation of field crops with saline water in salt-affected soil is a critical worldwide challenge that rigorously influences agricultural productivity and sustainability, especially in arid and semiarid zones with limited freshwater resources. Therefore, we investigated a synergistic amendment strategy for salt-affected soil using a singular and combined application of plant growth-promoting rhizobacteria (PGPR at 950 g ha−1; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) and silica nanoparticles (SiNPs) at 500 mg L−1 to mitigate the detrimental impacts of irrigation with saline water on the growth, physiology, and productivity of barley (Hordum vulgare L.), along with soil attributes and nutrient uptake during 2019/2020 and 2020/2021. Our field trials showed that the combined application of PGPR and SiNPs significantly improved the soil physicochemical properties, mainly by reducing the soil exchangeable sodium percentage. Additionally, it considerably enhanced the microbiological counts (i.e., bacteria, azotobacter, and bacillus) and soil enzyme activity (i.e., urease and dehydrogenase) in both growing seasons compared with the control. The combined application of PGPR and SiNPs alleviated the detrimental impacts of saline water on barley plants grown in salt-affected soil compared to the single application of PGPR or SiNPs. The marked improvement was due to the combined application of PGPR and SiNPs, which enhanced the physiological properties (e.g., relative chlorophyll content (SPAD), relative water content (RWC), stomatal conductance, and K/Na ratio), enzyme activity (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX)), and yield and yield-related traits and nutrient uptake (N, P, and K) of barley plants. Moreover, the Na+ content, hydrogen peroxide (H2O2) content, lipid peroxidation (MDA), electrolyte leakage (EL), and proline content were reduced upon the application of PGPR + SiNPs. These results could be important information for cultivating barley and other cereal crops in salt-affected soil under irrigation with saline water.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference76 articles.

1. FAOSTAT. Food and Agriculture Organization of the United Nations https://www.fao.org/worldfoodsituation/csdb/en/

2. Impacts of regional climate change on barley yield and its geographical variation in South Korea

3. Productivity of some barley cultivars as affected by inoculation under water stress conditions;Thalooth;Elixir Appl. Bot.,2012

4. Nitrogen and Water Utilization Efficiency of Barley Subjected To Desiccated Conditions in Moderately Salt-Affected Soil

5. Response of barley quality traits, yield and antioxidant enzymes to water-stress and chemical inducers;Hafez;Int. J. Plant Prod.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3