Glycine Betaine and β-Aminobutyric Acid Mitigate the Detrimental Effects of Heat Stress on Chinese Cabbage (Brassica rapa L. ssp. pekinensis) Seedlings with Improved Photosynthetic Performance and Antioxidant System

Author:

Quan Jin,Zheng Weiwei,Wu Meifang,Shen Zhuojun,Tan Jingru,Li Zewei,Zhu BiaoORCID,Hong Seung-Beom,Zhao Yanting,Zhu ZhujunORCID,Zang YunxiangORCID

Abstract

Heat stress is one of the major abiotic factors that limit the growth, development, and productivity of plants. Both glycine betaine (GB) and β-aminobutyric acid (BABA) have received considerable attention due to their roles in stimulating tolerance to diverse abiotic stresses. In order to understand how GB and BABA biostimulants alleviate heat stress in a cool-weather Chinese cabbage (Brassica rapa L. ssp. pekinensis) plant, we investigated the GB- and BABA-primed heat-stressed plants in terms of their morpho-physiological and biochemical traits. Priming with GB (15 mM) and BABA (0.2 mM) was conducted at the third leaf stage by applying foliar sprays daily for 5 days before 5 days of heat stress (45 °C in 16 h light/35 °C in 8 h dark) on Chinese cabbage seedlings. The results indicate that GB and BABA significantly increased chlorophyll content, and the parameters of both gas exchange and chlorophyll fluorescence, of Chinese cabbage under heat stress. Compared with the unprimed heat-stressed control, the dry weights of GB- and BABA-primed plants were significantly increased by 36.36% and 45.45%, respectively. GB and BABA priming also greatly mitigated membrane damage, as indicated by the reduction in malondialdehyde (MDA) and electrolyte leakage through the elevation of proline content, and increased activity levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). Taken together, GB and BABA have great potential to enhance the thermotolerance of Chinese cabbage through higher photosynthesis performance, osmoprotection, and antioxidant enzyme activity.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3