How Does Quinoa (Chenopodium quinoa Willd.) Respond to Phosphorus Fertilization and Irrigation Water Salinity?

Author:

Bouras HamzaORCID,Choukr-Allah Redouane,Amouaouch Younes,Bouaziz Ahmed,Devkota Krishna Prasad,El Mouttaqi Ayoub,Bouazzama Bassou,Hirich Abdelaziz

Abstract

Soil salinity is a major problem in arid and semi-arid regions, causing land degradation, desertification, and subsequently, food insecurity. Salt-affected soils and phosphorus (P) deficiency are the common problems in the sub-Sahara, including the Southern region of Morocco. Soil salinity limits plant growth by limiting water availability, causing a nutritional imbalance, and imparting osmotic stress in the plants. The objective of this study was to determine the positive effects of P on growth and productivity and understand the major leaf mineral nutrient content of quinoa (Chenopodium quinoa Willd.) cv. “ICBA Q5” irrigated with saline water. A field experiment applying three salinity (Electrical Conductivity, EC) levels of irrigation water (ECw = 5, 12, and 17 dS·m−1) and three P fertilizer rates (0, 60, and 70 kg of P2O5 ha−1) were evaluated in a split-plot design with three replications. The experiment was conducted in Foum El Oued, South of Morocco on sandy loam soil during the period of March–July 2020. The results showed that irrigation with saline water significantly reduced the final dry biomass, seed yield, harvest index, and crop water productivity of quinoa; however, P application under saline conditions minimized the effect of salinity and improved the yield. The application of 60 and 70 kg of P2O5 ha−1 increased (p < 0.05) the seed yield by 29 and 51% at low salinity (5 dS·m−1), by 16 and 2% at medium salinity (12 dS·m−1), and by 13 and 8% at high salinity (17 dS·m−1), respectively. The leaf Na+ and K+ content and Na+/K+ ratio increased with irrigation water salinity. However, the leaf content of Mg, Ca, Zn, and Fe decreased under high salinity. It was also found that increasing P fertilization improved the essential nutrient content and nutrient uptake. Our finding suggests that P application minimizes the adverse effects of high soil salinity and can be adopted as a coping strategy under saline conditions.

Funder

OCP Group

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference54 articles.

1. Soil Salinity: Historical Perspectives and a World Overview of the Problem;Shahid,2018

2. Global Map of Salt-Affected Soilshttps://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/

3. Salt Tolerance Strategies of the Ancient Andean Crop Quinoa;Jaramillo Roman,2021

4. Critical Knowledge Gaps and Research Priorities in Global Soil Salinity;Hopmans,2021

5. Energy costs of salt tolerance in crop plants

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3