Co-Responses of Soil Organic Carbon Pool and Biogeochemistry to Different Long-Term Fertilization Practices in Paddy Fields

Author:

Kim Young-NamORCID,Lee Ji-Hyun,Seo Han-Ryul,Kim Jeong-Woo,Cho Young-Sang,Lee Danbi,Kim Bo-Hyun,Yoon Jung-Hwan,Choe Hyeonji,Lee Yong BokORCID,Kim Kye-Hoon

Abstract

Long-term application of soil organic amendments (SOA) can improve the formation of soil organic carbon (SOC) pool as well as soil fertility and health of paddy lands. However, the effects of SOA may vary with the input amount and its characteristics. In this work, a descriptive field research was conducted during one cropping season to investigate the responses of various SOC fractions to different long-term fertilization practices in rice fields and their relationships with soil biogeochemical properties and the emission of greenhouse gases (GHG). The field sites included two conventional paddies applied with chemical fertilizer (CF) or CF + rice straw (RS) and six organic agriculture paddies applied with oilseed cake manure (OCM) + wheat straw (WS), cow manure (CM) + WS, or CM + RS. The two paddy soils treated with CM + RS had significantly higher concentrations of recalcitrant to labile C forms, such as loss-on-ignition C (LOIC; 56–73 g kg−1), Walkley–Black C (WBC; 20–25 g kg−1), permanganate oxidizable C (POXC; 835–853 mg kg−1), and microbial biomass carbon (MBC; 133–141 mg kg−1), than soils treated with other SOA. Likewise, long-term application of CM + RS seemed to be the best for regulating soil fertility parameters, such as ammonium (11–141 mg kg−1); phosphate (61–106 mg kg−1); and soluble Ca, K, and Mg (7–10, 0.5–1.2, and 1.9–3.8 mg kg−1, respectively), although the results varied with the location and soil properties of rice fields. Additionally, the two paddy sites had the largest cumulative methane emission (754–762 kg ha−1), seemingly attributed to increased microbial biomass and labile C fractions. The significant correlations of most SOC fractions with soil microbial biomass, trophic factors, and methane emissions were confirmed with multivariate data analysis. It was also possible to infer that long-term SOA application, especially with CM + RS, enhanced interaction in belowground paddy fields, contributing to soil fertility and rice production sustainability. Based on our findings, we suggest the need for analysis of various types of SOC fractions to efficiently manage soil fertility and quality of paddy fields, C sequestration, and GHG emissions.

Funder

Rural Development Administration

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3