Seedling Biometry of nud Knockout and win1 Knockout Barley Lines under Ionizing Radiation

Author:

Antonova Elena V.ORCID,Shimalina Nadezhda S.ORCID,Korotkova Anna M.,Kolosovskaya Ekaterina V.,Gerasimova Sophia V.,Khlestkina Elena K.ORCID

Abstract

The genes NUD and WIN1 play a regulatory role in cuticle organization in barley. A knockout (KO) of each gene may alter plant mechanisms of adaptation to adverse environmental conditions. A putative pleiotropic effect of NUD or WIN1 gene mutations in barley can be assessed in a series of experiments in the presence or absence of a provoking factor. Ionizing radiation is widely used in research as a provoking factor for quantifying adaptive potential of living organisms. Our aim was to evaluate initial stages of growth and development of barley lines with a KO of NUD or WIN1 under radiation stress. Air-dried barley grains with different KOs and wild-type control (WT) were exposed to γ-radiation at 50, 100, or 200 Gy at a dose rate of 0.74 R/min. Approximately 30 physiological parameters were evaluated, combined into groups: (1) viability, (2) radiosensitivity, and (3) mutability of barley seed progeny. Seed germination, seedling survival, and shoot length were similar among all barley lines. Naked nud KO lines showed lower weights of seeds, roots, and seedlings and shorter root length as compared to win1 KO lines. The shoot-to-root length ratio of nud KO lines’ seedlings exceeded that of win1 KO and WT lines. In terms of the number of seedlings with leaves, all the KO lines were more sensitive to pre-sowing γ-irradiation. Meanwhile, the radioresistance of nud KO lines (50% growth reduction dose [RD50] = 318–356 Gy) and WT plants (RD50 = 414 Gy) judging by seedling weight was higher than that of win1 KO lines (RD50 = 201–300 Gy). Resistance of nud KO lines to radiation was also demonstrated by means of root length (RD50 = 202–254 Gy) and the shoot-to-root length ratio. WT seedlings had the fewest morphological anomalies. In nud KO lines, mainly alterations of root shape were found, whereas in win1 KO lines, changes in the color and shape of leaves were noted. Thus, seedlings of nud KO lines are characterized mainly by changes in the root system (root length, root number, and root anomalies). For win1 KO lines, other parameters are sensitive (shoot length and alterations of leaf shape and color). These data may indicate a pleiotropic effect of genes NUD and WIN1 in barley.

Funder

Russian Science Foundation

Institute of Plant and Animal Ecology

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3