The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period

Author:

Bogužas Vaclovas,Skinulienė Lina,Butkevičienė Lina Marija,Steponavičienė VaidaORCID,Petrauskas Ernestas,Maršalkienė Nijolė

Abstract

One of the main goals of the 21st century’s developing society is to produce the necessary amount of food while protecting the environment. Globally, particularly in Lithuania and other northern regions with similar climatic and soil conditions, there is a lack of data on the long-term effects of crop rotation under the current conditions of intensive farming and climate change. It has long been recognized that monocultures cause soil degradation compared to crop rotation. Research hypothesis: the long-term implementation of crop rotation makes a positive influence on the soil environment. The aim of our investigation was to compare the effects of a 50-year-long application of different crop rotations and monocultures on soil CO2 emissions, earthworms, and productivity of winter rye. Long-term stationary field experiments were established in 1966 at Vytautas Magnus University Experimental Station (54°53′ N, 23°50′ E). The study was conducted using intensive field rotation with row crops, green manure crop rotations, three-course rotation, and rye monoculture. Pre-crop had the largest impact on soil CO2 emissions, and more intensive soil CO2 emissions occurred at the beginning of winter rye growing season. Rye appeared not to be demanding in terms of pre-crops. However, its productivity decreased when grown in monoculture, and the optimal mineral fertilization remained lower than with crop rotation, but productivity remained stable.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3