Pleiotropic Effect of the compactum Gene and Its Combined Effects with Other Loci for Spike and Grain-Related Traits in Wheat

Author:

Wen Mingxing,Su Jiaxuan,Jiao ChengzhiORCID,Zhang Xu,Xu Tao,Wang Tong,Liu Xiaoxue,Wang Zongkuan,Sun Li,Yuan Chunxia,Wang Haiyan,Wang XiueORCID,Xiao JinORCID

Abstract

Club wheat (Triticum aestivum ssp. compactum) with a distinctly compact spike morphology was conditioned by the dominant compactum (C) locus on chromosome 2D and resulted in a redistribution of spike yield components. The disclosure of the genetic basis of club wheat was a prerequisite for the development of widely adapted, agronomically competitive club wheat cultivars. In this study, we used a recombinant inbred line population derived from a cross between club wheat Hiller and modern cultivar Yangmai 158 to construct a genetic linkage map and identify quantitative trait loci associated with 15 morphological traits. The club allele acted in a semi-dominant manner and the C gene was mapped to 370.12–406.29 Mb physical region on the long arm of 2D. Apart from compact spikes, C exhibited a pleiotropic effect on ten other agronomic traits, including plant height, three spike-related traits and six grain-related traits. The compact spike phenotype was correlated with decreased grain size and weight, but with an increase in floret fertility and grain number. These pleiotropic effects make club wheat have compatible spike weight with a normal spike from common wheat. The genetic effects of various gene combinations of C with four yield-related genes, including Ppd-D1, Vrn-D3, Rht-B1b and Rht8, were evaluated. C had no epistatic interaction with any of these genes, indicating that their combinations would have an additive effect on other agronomically important traits. Our research provided a theoretical foundation for the potentially effective deployment of C gene into modern breeding varieties in combination with other favorable alleles.

Funder

the National Key Research and Development Program of China

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3