The Native Arbuscular Mycorrhizal Fungi and Vermicompost-Based Organic Amendments Enhance Soil Fertility, Growth Performance, and the Drought Stress Tolerance of Quinoa

Author:

Benaffari Wissal,Boutasknit Abderrahim,Anli MohamedORCID,Ait-El-Mokhtar MohamedORCID,Ait-Rahou Youssef,Ben-Laouane Raja,Ben Ahmed Hela,Mitsui ToshiakiORCID,Baslam MarouaneORCID,Meddich AbdelilahORCID

Abstract

The present study aimed to determine the effects of biostimulants on the physicochemical parameters of the agricultural soil of quinoa under two water regimes and to understand the mode of action of the biostimulants on quinoa for drought adaptation. We investigated the impact of two doses of vermicompost (5 and 10 t/ha) and arbuscular mycorrhizal fungi applied individually, or in joint application, on attenuating the negative impacts of water shortage and improving the agro-physiological and biochemical traits of quinoa, as well as soil fertility, under two water regimes (well-watered and drought stress) in open field conditions. Exposure to drought decreased biomass, leaf water potential, and stomatal conductance, and increased malondialdehyde and hydrogen peroxide content. Mycorrhiza and/or vermicompost promoted plant growth by activating photosynthesis machinery and nutrient assimilation, leading to increased total soluble sugars, proteins, and antioxidant enzyme activities in the leaf and root. After the experiment, the soil’s total organic matter, phosphorus, nitrogen, calcium, and soil glomalin content improved by the single or combined application of mycorrhiza and vermicompost. This knowledge suggests that the combination of mycorrhiza and vermicompost regulates the physiological and biochemical processes employed by quinoa in coping with drought and improves the understanding of soil–plant interaction.

Funder

European Union

Japan Society for the Promotion of Science

Niigata University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3