Glyphosate Efficacy in Chloris virgata Sw. in Response to Temperature and Tank Mixing

Author:

Mahajan Gulshan,Chauhan Bhagirath SinghORCID

Abstract

Glyphosate alone or a tank mixture of glyphosate and 2,4-D is commonly used for broad-spectrum weed control under fallow conditions in Australia. Air temperature or mixing glyphosate with 2,4-D, may influence the efficacy of glyphosate on feather fingergrass (Chloris virgata Sw.), a problematic summer-season weed of Australia. Dose–response studies were conducted with four populations of feather fingergrass under temperature-controlled glasshouse conditions (35/25 °C and 25/15 °C at 12 h/12 h) to assess the level of glyphosate resistance in relation to temperature regimes. Four parameter log-logistic models were used to develop dose–response curves. Based on plant mortality percentage, LD50 (lethal dose for 50% mortality) values of glyphosate at 25/15 °C for populations Ch, SGM2, SGW2, and CP2 were 137, 60, 650, and 1067 g ae ha−1, respectively. However, at 35/25 °C, the corresponding LD50 values were 209, 557, 2108, and 2554 g ae ha−1, respectively. A similar response was observed for the parameter GR50 (dose for 50% growth reduction) values of glyphosate. These results indicate that populations SGW2 and CP2 are highly glyphosate-resistant and in the summer season, it may be very difficult to control these populations due to poor glyphosate efficacy. These results further suggest that the efficacy of glyphosate for feather fingergrass control can be improved if applied during cooler temperatures (25/15 °C) or the spring season compared with warmer temperatures (35/25 °C) or the summer season. In another study, 2,4-D antagonized glyphosate remarkably in the CP2 (glyphosate-resistant) population but only marginally in the Ch (glyphosate-susceptible) population. Thus, it is not advisable to mix 2,4-D with glyphosate for the control of glyphosate-resistant feather fingergrass populations. The results further suggest that the use of this mixture is useful if the feather fingergrass is not glyphosate-resistant; however, the use of the mixture is to be avoided if the population is glyphosate-resistant in order to not exacerbate the potential resistance problem.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference33 articles.

1. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia;Pest Manag. Sci.,2018

2. Heap, I. (2021, June 01). The International Herbicide Resistant Weeds Database. Available online: www.weedscience.org.

3. Osten, V. (2012). Feathertop Rhodes Grass: A Best Weed Management Guide.

4. Llewellyn, R., Ronning, D., Clarke, M., Mayfield, A., Walker, S., and Ouzman, J. (2016). Impact of Weeds on Australian Grain Production: The Cost of Weeds to Australian Grain Growers and the Adoption of Weed Management and Tillage Practices, Report for GRDC.

5. Factors affecting seed germination of feather fingergrass (Chloris virgata);Weed Sci.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3