Multi-Omics Approaches to Study Molecular Mechanisms in Cannabis sativa

Author:

Sirangelo Tiziana M.ORCID,Ludlow Richard A.,Spadafora Natasha D.ORCID

Abstract

Cannabis (Cannabis sativa L.), also known as hemp, is one of the oldest cultivated crops, grown for both its use in textile and cordage production, and its unique chemical properties. However, due to the legislation regulating cannabis cultivation, it is not a well characterized crop, especially regarding molecular and genetic pathways. Only recently have regulations begun to ease enough to allow more widespread cannabis research, which, coupled with the availability of cannabis genome sequences, is fuelling the interest of the scientific community. In this review, we provide a summary of cannabis molecular resources focusing on the most recent and relevant genomics, transcriptomics and metabolomics approaches and investigations. Multi-omics methods are discussed, with this combined approach being a powerful tool to identify correlations between biological processes and metabolic pathways across diverse omics layers, and to better elucidate the relationships between cannabis sub-species. The correlations between genotypes and phenotypes, as well as novel metabolites with therapeutic potential are also explored in the context of cannabis breeding programs. However, further studies are needed to fully elucidate the complex metabolomic matrix of this crop. For this reason, some key points for future research activities are discussed, relying on multi-omics approaches.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference98 articles.

1. Cannabis Domestication, Breeding History, Present-day Genetic Diversity, and Future Prospects

2. Cannabis sativa: The Plant of the Thousand and One Molecules

3. Variations of tetrahydrocannabinol content in cannabis plants to distinguish the fibre-type from drug-type plants;Avico;Bull. Narc.,1985

4. Molecular targets of the phytocannabinoids: A complex picture;Morales;Prog. Chem. Org. Nat. Prod.,2017

5. The Genomics ofCannabisand Its Close Relatives

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3