Zinc Oxide Nanoparticles: Physiological and Biochemical Responses in Barley (Hordeum vulgare L.)

Author:

Voloshina MarinaORCID,Rajput Vishnu D.ORCID,Minkina TatianaORCID,Vechkanov Evgeniy,Mandzhieva SaglaraORCID,Mazarji MahmoudORCID,Churyukina Ella,Plotnikov AndreyORCID,Krepakova Maria,Wong Ming Hung

Abstract

This work aimed to study the toxic implications of zinc oxide nanoparticles (ZnO NPs) on the physio-biochemical responses of spring barley (Hordeum sativum L.). The experiments were designed in a hydroponic system, and H. sativum was treated with two concentrations of ZnO NPs, namely 300 and 2000 mg/L. The findings demonstrated that ZnO NPs prevent the growth of H. sativum through the modulation of the degree of oxidative stress and the metabolism of antioxidant enzymes. The results showed increased malondialdehyde (MDA) by 1.17- and 1.69-fold, proline by 1.03- and 1.09-fold, and catalase (CAT) by 1.4- and 1.6-fold in shoots for ZnO NPs at 300 and 2000 mg/L, respectively. The activity of superoxide dismutase (SOD) increased by 2 and 3.3 times, ascorbate peroxidase (APOX) by 1.2 and 1.3 times, glutathione-s-transferase (GST) by 1.2 and 2.5 times, and glutathione reductase (GR) by 1.8 and 1.3 times in roots at 300 and 2000 mg/L, respectively. However, the level of δ-aminolevulinic acid (ALA) decreased by 1.4 and 1.3 times in roots and by 1.1 times in both treatments (nano-300 and nano-2000), respectively, indicating changes in the chlorophyll metabolic pathway. The outcomes can be utilized to create a plan of action for plants to withstand the stress brought on by the presence of NPs.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference67 articles.

1. Nanotechnology in the Restoration of Polluted Soil

2. Nanofertilizers: A sustainable alternative to conventional means;Verma,2022

3. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges

4. Nanoparticles: Physiology, Chemistry and Biochemistry;Singh,2022

5. Silica breaks through in plants

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3