SNORKEL Genes Relating to Flood Tolerance Were Pseudogenized in Normal Cultivated Rice

Author:

Nagai KeisukeORCID,Kurokawa Yusuke,Mori Yoshinao,Minami AnzuORCID,Reuscher Stefan,Wu Jianzhong,Matsumoto Takashi,Ashikari Motoyuki

Abstract

SNORKEL1 (SK1) and SNORKEL2 (SK2) are ethylene responsive factors that regulate the internode elongation of deepwater rice in response to submergence. We previously reported that normal cultivated rice lacks SK genes because the Chromosome 12 region containing SK genes was deleted from its genome. However, no study has analyzed how the genome defect occurred in that region by comparing normal cultivated rice and deepwater rice. In this study, comparison of the sequence of the end of Chromosome 12, which contains SK genes, between normal and deepwater rice showed that complicated genome changes such as insertions, deletions, inversions, substitutions, and translocation occurred frequently in this region. In addition to SK1 and SK2 of deepwater rice, gene prediction analysis identified four genes containing AP2/ERF domains in normal cultivated rice and six in deepwater rice; we called these genes SK-LIKE (SKL) genes. SKs and SKLs were present in close proximity to each other, and the SKLs in normal cultivated rice were in tandem. These predicted genes belong to the same AP2/ERF subfamily and were separated into four types: SK1, SK2, SKL3, and SKL4. Sequence comparison indicated that normal cultivated rice possesses a gene with high homology to SK2, which we named SKL1. However, none of the predicted SKLs except for SKL3s were expressed during submergence. Although SKL3s were expressed in both normal and deepwater rice, normal rice does not undergo internode elongation, suggesting that its expression does not contribute to internode elongation. Plants overexpressing SKL1, which showed the most homology to SK2, underwent internode elongation similar to plants overexpressing SK1 and SK2 under normal growth conditions. A yeast one-hybrid assay showed that the C-end of SKL1 has transcription activity, as do the C-ends of SK1 and SK2. Our results suggested that SKLs were derived via gene duplication, but were not expressed and pseudogenized in normal cultivated rice during sequence evolution.

Funder

Japan Society for the Promotion of Science

SATREPS

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3