Transcriptome Profiling in Leaves of Wheat Genotype under Heat Stress

Author:

Lamba Kavita,Kumar MukeshORCID,Singh VikramORCID,Chaudhary LakshmiORCID,Sharma RajatORCID,Yadav Samita,Yashveer Shikha,Dalal Mohinder Singh,Gupta Vijeta,Nagpal Shreya,Saini Manuj,Rai Navreet Kaur,Pati Rutuparna,Malhotra Karuna

Abstract

Hexaploid wheat is the main cereal food crop for most people but it is highly influenced by climatic variations. The influence of these climatic variations was studies in wheat genotype WH -1184 in field conditions under two different environments (normal and late sown) and it was found that the genotype is less yielding under late sown conditions. To study the effects of heat stress at transcript level, it was grown under two different conditions (WH-1184 control and heat treated) in pots and transcriptome analysis based on Illumina Novoseq 6000 was carried out for the identification of the differentially expressed genes (DEGs) and metabolic processes or gene regulations influenced by heat stress which lead to a reduction in both quality and quantity of wheat production. These DEGs were utilized to set up a subsequent unigene assembly and GO analysis was performed using unigenes to analyze functions of DEGs which were classified into three main domains, i.e., biological process, cellular component, and molecular function. KEGG (Kyoto Encyclopedia of Genes and Genomes) ontology was used to visualize the physiological processes or to identify KEGG pathways that provide plants their ability to shield in adverse conditions of heat stress. From KEGG ontology, it was reported that genes which encoded protein detoxification and ABC1 domain-containing protein were upregulated while genes thatencoded glutathione transferase (GST), peroxidase, and chitinase enzymes were downregulated. Downregulation of these enzymes during heat stress causes oxidative damages in plants while upregulated proteins play a main role in detoxification to protect plants from heat stress. It was hypothesized that the yield of WH-1184 decreased 44% under heat stress due to the downregulation of genes that encoded GST, peroxidase, and chitinase enzymes which can protect plants from oxidative damage. Hence, upregulation of these genes might be helpful for the adaptation of this genotype under heat stress condition.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3