Transpirational Leaf Cooling Effect Did Not Contribute Equally to Biomass Retention in Wheat Genotypes under High Temperature

Author:

Bramley Helen,Ranawana S. R. W. M. Chandima J. K.ORCID,Palta Jairo A.ORCID,Stefanova Katia,Siddique Kadambot H. M.ORCID

Abstract

High temperature and water deficit are the most critical yield-limiting environmental factors for wheat in rainfed environments. It is important to understand the heat avoidance mechanisms and their associations with leaf morpho-physiological traits that allow crops to stay cool and retain high biomass under warm and dry conditions. We examined 20 morpho-physiologically diverse wheat genotypes under ambient and elevated temperatures (Tair) to investigate whether increased water use leads to high biomass retention due to increased leaf cooling. An experiment was conducted under well-watered conditions in two partially controlled glasshouses. We measured plant transpiration (Tr), leaf temperature (Tleaf), vapor pressure deficit (VPD), and associated leaf morpho-physiological characteristics. High water use and leaf cooling increased biomass retention under high temperatures, but increased use did not always increase biomass retention. Some genotypes maintained biomass, irrespective of water use, possibly through mechanisms other than leaf cooling, indicating their adaptation under water shortage. Genotypic differences in leaf cooling capacity did not always correlate with Tr (VPD) response. In summary, the contribution of high water use or the leaf cooling effect on biomass retention under high temperature is genotype-dependent and possibly due to variations in leaf morpho-physiological traits. These findings are useful for breeding programs to develop climate resilient wheat cultivars.

Funder

UWA INSTITUTE OF AGRICULTURE

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3