Ecological Niche and Interspecific Association of Plant Communities in Alpine Desertification Grasslands: A Case Study of Qinghai Lake Basin

Author:

Hu Ying,Wang Huichun,Jia Huiping,Pen Maodeji,Liu Nian,Wei Jingjing,Zhou Biyao

Abstract

The study of niche and interspecific relationships is one of the classical ecological theories. We set up four desertification gradients. The “Levins” and “Pianka” method were used to calculate the species’ niche breadth and niche overlap. Interspecies associations were analyzed by the ratio of variance (VR), Chi-square test, association coefficient (AC) and Ochiai index (OI). The results showed that in grasslands with different degrees of desertification, Stellera chromosome (3.90), Thermopsis lanceolate (3.52) and Aster almanacs (3.99) had larger niche widths, which were wide-area species of plant communities in the desertification area. The ecological niches of the same species in different habitats or different species in the same habitat were multi-dimensional. Niche differentiation measured by niche overlap can occur at any community succession stage. Niche width and niche overlap were not always consistent with environmental changes. Moreover, there was no linear relationship between them. The interspecific connection coefficient fluctuated greatly with the environment. The results can provide a reference for the study of plant community competition mechanism and desertification control in desertification land of the study area. We still do not know the mechanism of how the plants were preserved and how the retained plants adapted to the new environment during the desertification process. We can further study these questions in the next step.

Funder

Qinghai Lake Basin Forest, Wetland and Desertification Land Monitoring Special Project

Innovation and Entrepreneurship Training Project of Qinghai Normal University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3