Chemical Composition of Thymus leucotrichus var. creticus Essential Oil and Its Protective Effects on Both Damage and Oxidative Stress in Leptodictyum riparium Hedw. Induced by Cadmium

Author:

Maresca VivianaORCID,Badalamenti NataleORCID,Ilardi Vincenzo,Bruno MaurizioORCID,Bontempo Paola,Basile Adriana

Abstract

The chemical profile of the essential oil (EO) of the aerial parts of Thymus leucotrichus var. creticus (Lamiaceae), a taxon not previously studied, was investigated by GC–MS analysis, using a DB–Wax polar column. Oxygenated monoterpenes and monoterpene hydrocarbons dominate the EO, with thymol (46.97%) and p-cymene (28.64%) as the main constituent of these two classes, respectively. The ability of the EO of T. leucotrichus to reduce Cd toxicity was studied in aquatic moss Leptodictyum riparium. To study EO-induced tolerance to Cd toxicity, apex growth, number of dead cells, DNA damage and antioxidant response in gametophytes were examined. The exogenous application of the EO yields a resumption of growth rate and a reduction in the number of dead cells; it also reduces the oxidative stress induced by Cd, as demonstrated by the reduction of the ROS content (with a decrease of 1.52% and 5%) and by the increased activity of antioxidant enzymes such as superoxide dismutase (SOD) (with an increase of 1.44% and 2.29%), CAT catalase (1.46% and 2.91%) and glutathione-S-transferase GST (1.57% and 1.90%). Furthermore, the application of the EO yields a reduction of DNA damage. These results clearly indicate the protective capacity of the EO of T. leucotrichus in modulating the redox state through the antioxidant pathway by reducing the oxidative stress induced by Cd.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference46 articles.

1. Citric acid assisted phytoremediation of cadmium by Brassica napus L.;Ehsan;Ecotox. Environ. Saf.,2014

2. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation;Hossain;J. Bot.,2012

3. Morphological and physiological responses of plants to cadmium toxicity: A review;Shanying;Pedosphere,2017

4. He, S., He, Z., Yang, X., Stoffella, P.J., and Baligar, V.C. (2015). Advances in Agronomy, Elsevier.

5. Jiang, Y., Fan, M., Hu, R., Zhao, J., and Wu, Y. (2018). Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas. Int. J. Environ. Res. Public Health, 15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3