Hybrid Seed Set in Relation with Male Floral Traits, Estimation of Heterosis and Combining Abilities for Yield and Its Components in Wheat (Triticum aestivum L.)

Author:

El Hanafi Samira,Cherkaoui Souad,Kehel ZakariaORCID,Sanchez-Garcia MiguelORCID,Sarazin Jean-Benoit,Baenziger StephenORCID,Tadesse Wuletaw

Abstract

Breeding hybrids with maximum heterosis requires efficient cross-pollination and an improved male sterility system. Renewed efforts have been made to dissect the phenotypic variation and genetic basis of hybrid floral traits, although the potential of tailoring the appropriate flower design on seed setting is less known. To this end, elite wheat genotypes were crossed using a chemical hybridizing agent at different doses. A total of 23 hybrids were developed from a partial diallel design; and planted in an alpha lattice design with their parents at two locations in Morocco, for two years, to evaluate for yield components, heterosis and combining abilities. The 13.5 L ha−1 dose induced a maximum level of sterility (95%) and seed set showed large phenotypic variation and high heritability. In parallel, seed set showed tight correlation with pollen mass (0.97), visual anther extrusion (0.94) and pollen shedding (0.91) (p < 0.001), allowing direct selection of the associated traits. Using the combined data, mid-parent heterosis ranges were −7.64–14.55% for biomass (BM), −8.34–12.51% for thousand kernel weight (TKW) and −5.29–26.65% for grain yield (YLD); while best-parent heterosis showed ranges of −11.18–7.20%, −11.35–11.26% and −8.27–24.04% for BM, TKW and YLD, respectively. The magnitude of general combining ability (GCA) variance was greater than the specific combining ability (SCA) variance suggesting a greater additive gene action for BM, TKW and YLD. The favorable GCA estimates showed a simple method to predict additive effects contributing to high heterosis and thus could be an effective approach for the selection of promising parents in early generations.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3