Gene Expression, Histology and Histochemistry in the Interaction between Musa sp. and Pseudocercospora fijiensis

Author:

Soares Julianna Matos da SilvaORCID,Rocha Anelita de JesusORCID,Nascimento Fernanda dos SantosORCID,Amorim Vanusia Batista Oliveira de,Ramos Andresa Priscila de Souza,Ferreira Cláudia FortesORCID,Haddad Fernando,Amorim Edson Perito

Abstract

Bananas are the main fruits responsible for feeding more than 500 million people in tropical and subtropical countries. Black Sigatoka, caused by the fungus Pseudocercospora fijiensis, is one of the most destructive disease for the crop. This fungus is mainly controlled with the use of fungicides; however, in addition to being harmful to human health, they are associated with a high cost. The development of resistant cultivars through crosses of susceptible commercial cultivars is one of the main focuses of banana breeding programs worldwide. Thus, the objective of the present study was to investigate the interaction between Musa sp. and P. fijiensis through the relative expression of candidate genes involved in the defence response to black Sigatoka in four contrasting genotypes (resistant: Calcutta 4 and Krasan Saichon; susceptible: Grand Naine and Akondro Mainty) using quantitative real-time PCR (RT–qPCR) in addition to histological and histochemical analyses to verify the defence mechanisms activated during the interaction. Differentially expressed genes (DEGs) related to the jasmonic acid and ethylene signalling pathway, GDSL-like lipases and pathogenesis-related proteins (PR-4), were identified. The number and distance between stomata were directly related to the resistance/susceptibility of each genotype. Histochemical tests showed the production of phenolic compounds and callosis as defence mechanisms activated by the resistant genotypes during the interaction process. Scanning electron microscopy (SEM) showed pathogenic structures on the leaf surface in addition to calcium oxalate crystals. The resistant genotype Krasan Saichon stood out in the analyses and has potential for use in breeding programs for resistance to black Sigatoka in banana and plantains.

Funder

Bill & Melinda Gates Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3