Abstract
The leaves of Annona cherimola Mill (cherimoya) are a potential source of phenolic compounds that have been shown to have beneficial properties. Therefore, this study focuses on establishing an ultrasonic-assisted extraction of phenolic compounds in cherimoya leaves using a sonotrode. For that purpose, a Box-Behnken design based on a response surface methodology (RSM) was used to optimize factors, such as amplitude, extraction time and solvent composition to obtain the maximum content of phenolic compounds by HPLC-MS and the maximum in-vitro antioxidant activity by DPPH, ABTS and FRAP assays in ‘Fino de Jete’ cherimoya leaves. The optimal conditions were 70% amplitude, 10 min and 40:60 ethanol/water (EtOH/H2O) (v/v). The results obtained under these optimum conditions by using a sonotrode were compared with those from an ultrasonic bath; briefly, recovery of phenolic compounds by sonotrode was 2.3 times higher than a bath. Therefore, these optimal conditions were applied to different varieties ‘Campas’, ‘Fino de Jete’ and ‘Negrito Joven’ harvested in the Tropical Coast of Granada (Spain). A total of 39 phenolic compounds were determined in these cherimoya leaf extracts, 24 phenolic compounds by HPLC-MS and 15 proanthocianidins by HPLC-FLD. 5-p-coumaroylquinic acid, lathyroside-7-O-α-l-rhamnopyranoside and quercetin hexose acetate were first identified in cherimoya leaves. The most concentrated phenolic compounds were the flavonoids, such as rutin and quercetin hexoside and proanthocyanidins including monomers. Almost no significant differences in the phenolic content in these cultivars were found (11–13 mg/g d.w. for phenolic compounds and 11–20 mg/g d.w. for proanthocyanidins). In addition, sonotrode ultrasonic-assisted extraction has been shown to be an efficient extraction technique in the phenolic recovery from cherimoya leaves that could be implemented on an industrial scale.
Funder
Ministerio de Ciencia e Innovación
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics