Abstract
Ammanniaauriculata is a troublesome broadleaf weed, widely distributed in the paddy fields of southern China. In this study, 10 biotypes of A. auriculata were sampled from Yangzhou City, China, where the paddy fields were seriously infested with A. auriculata, and their resistance levels to acetolactate synthase (ALS) inhibitor bensulfuron-methyl were determined. The whole-plant response assays showed that nine A. auriculata biotypes were highly resistant (from 16.4- to 183.1-fold) to bensulfuron-methyl in comparison with a susceptible YZ-S biotype, and only one YZ-6 biotype was susceptible. ALS gene sequencing revealed that three ALS gene copies existed in A. auriculata, and four different amino acid substitutions (Pro197-Leu, -Ala, -Ser, and -His) at site 197 in the AaALS1 or 2 genes were found in eight resistant biotypes. In addition, no amino acid mutations in three ALS genes were found in the YZ-3 biotype. These results suggested that target-site mutations or non-target-site resistance mechanisms were involved in tested resistant A. auriculata biotypes. Finally, a cleaved amplified polymorphic sequence (CAPS) marker was identified to rapidly detect the Pro197 mutations in A. auriculata.
Funder
the Agricultural Science and Technology Innovation Fund
the National Natural Science Foundation of China
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference41 articles.
1. The International Herbicide-Resistant Weed Database
http://www.weedscience.org
2. Evolution in Action: Plants Resistant to Herbicides
3. Deciphering the evolution of herbicide resistance in weeds
4. Target-Site Mutations Conferring Herbicide Resistance
5. Research progress of sulfonylurea herbicides;Yang;Mod. Agrochem.,2022
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献