Abstract
The identification of plant species is fundamental for the effective study and management of biodiversity. In a manual identification process, different characteristics of plants are measured as identification keys which are examined sequentially and adaptively to identify plant species. However, the manual process is laborious and time-consuming. Recently, technological development has called for more efficient methods to meet species’ identification requirements, such as developing digital-image-processing and pattern-recognition techniques. Despite several existing studies, there are still challenges in automating the identification of plant species accurately. This study proposed designing and developing an automated real-time plant species identification system of medicinal plants found across the Borneo region. The system is composed of a computer vision system that is used for training and testing a deep learning model, a knowledge base that acts as a dynamic database for storing plant images, together with auxiliary data, and a front-end mobile application as a user interface to the identification and feedback system. For the plant species identification task, an EfficientNet-B1-based deep learning model was adapted and trained/tested on a combined public and private plant species dataset. The proposed model achieved 87% and 84% Top-1 accuracies on a test set for the private and public datasets, respectively, which is more than a 10% accuracy improvement compared to the baseline model. During real-time system testing on the actual samples, using our mobile application, the accuracy slightly dropped to 78.5% (Top-1) and 82.6% (Top-5), which may be related to training data and testing conditions variability. A unique feature of the study is the provision of crowdsourcing feedback and geo-mapping of the species in the Borneo region, with the help of the mobile application. Nevertheless, the proposed system showed a promising direction toward real-time plant species identification system.
Funder
Universiti Brunei Darussalam
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献