Presence of the Herbaceous Marsh Species Schoenoplectus americanus Enhances Surface Elevation Gain in Transitional Coastal Wetland Communities Exposed to Elevated CO2 and Sediment Deposition Events

Author:

Stagg Camille LaFosseORCID,Laurenzano ClaudiaORCID,Vervaeke William C.,Krauss Ken W.ORCID,McKee Karen L.ORCID

Abstract

Coastal wetlands are dynamic ecosystems that exist along a landscape continuum that can range from freshwater forested wetlands to tidal marsh to mudflat communities. Climate-driven stressors, such as sea-level rise, can cause shifts among these communities, resulting in changes to ecological functions and services. While a growing body of research has characterized the landscape-scale impacts of individual climate-driven stressors, little is known about how multiple stressors and their potential interactions will affect ecological functioning of these ecosystems. How will coastal wetlands respond to discrete climate disturbances, such as hurricane sediment deposition events, under future conditions of elevated atmospheric CO2? Will these responses vary among the different wetland communities? We conducted experimental greenhouse manipulations to simulate sediment deposition from a land-falling hurricane under future elevated atmospheric CO2 concentrations (720 ppm CO2). We measured responses of net primary production, decomposition, and elevation change in mesocosms representing four communities along a coastal wetland landscape gradient: freshwater forested wetland, forest/marsh mix, marsh, and mudflat. When Schoenoplectus americanus was present, above- and belowground biomass production was highest, decomposition rates were lowest, and wetland elevation gain was greatest, regardless of CO2 and sediment deposition treatments. Sediment addition initially increased elevation capital in all communities, but post-deposition rates of elevation gain were lower than in mesocosms without added sediment. Together these results indicate that encroachment of oligohaline marshes into freshwater forested wetlands can enhance belowground biomass accumulation and resilience to sea-level rise, and these plant-mediated ecosystem services will be augmented by periodic sediment pulses from storms and restoration efforts.

Funder

U.S. Geological Survey, Climate and Land Use R&D Program, Ecosystems Program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3