Abstract
Grapevine badnavirus 1 (GBV-1) was recently discovered in grapevine using high throughput sequencing. In order to carry out large-scale testing that will allow for better insights into virus distribution, conventional and real-time PCR assays were developed using sequences both from previously known, and four newly characterized isolates. Throughout the growing season and dormancy, GBV-1 can be detected by real-time PCR using available tissue, with the possibility of false-negative results early in vegetation growth. GBV-1 real-time PCR analysis of 4302 grapevine samples from the Croatian continental and coastal wine-growing regions revealed 576 (~13.4%) positive vines. In the continental wine-growing region, virus incidence was confirmed in only two collection plantations, whereas in the coastal region, infection was confirmed in 30 commercial vineyards and one collection plantation. Infection rates ranged from 1.9 to 96% at the different sites, with predominantly autochthonous grapevine cultivars infected. Conventional PCR products obtained from 50 newly discovered GBV-1 isolates, containing the 375 nucleotides long portion of the reverse transcriptase gene, showed nucleotide and amino acid identities ranging from 94.1 to 100% and from 92.8 to 100%, respectively. The reconstructed phylogenetic tree positioned the GBV-1 isolates taken from the same vineyard close to each other indicating a possible local infection event, although the tree nodes were generally not well supported.
Funder
Croatian Science Foundation
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献