Genome-Wide Identification of MAPKK and MAPKKK Gene Family Members and Transcriptional Profiling Analysis during Bud Dormancy in Pear (Pyrus x bretschneideri)

Author:

Liang Qin,Lin Xiaojie,Liu Jinhang,Feng Yu,Niu Xianqian,Wang Chao,Song Keke,Yang Chao,Li Liang,Li Yongyu

Abstract

The mitogen-activated protein kinase (MAPK) cascade consisting of three types of reversibly major signal transduction module (MAPKKK, MAPKK, and MAPK) is distributed in eukaryotes. MAPK cascades participate in various aspects of plant development, including hormone responses, cell division and plant dormancy. Pear is one of the most economically important species worldwide, and its yield is directly affected by dormancy. In this study, genome-wide identification of MAPKK and MAPKKK gene family members in Pyrus x bretschneideri and transcriptional expression analysis of MAPK cascades during pear dormancy were performed. We identified 8 MAPKKs (PbrMKKs) and 100 MAPKKKs (PbrMAPKKKs) in Pyrus using recent genomic information. PbrMAPKKs were classified into four subgroups based on phylogenetic analysis, whereas PbrMAPKKKs were grouped into 3 subfamilies (MEKK, Raf, and ZIK). Most PbrMAPKKKs and PbrMAPKKs in the same subfamily had similar gene structures and conserved motifs. The genes were found on all 17 chromosomes. The comprehensive transcriptome analysis and quantitative real-time polymerase chain reaction (qRT–PCR) results showed that numerous MAPK cascade genes participated in pear bud dormancy. The interaction network and co-expression analyses indicated the crucial roles of the MAPK member-mediated network in pear bud dormancy. Overall, this study advances our understanding of the intricate transcriptional control of MAPKKK-MAPKK-MAPK genes and provides useful information on the functions of dormancy in perennial fruit trees.

Funder

the Specialized Research Fund for the Doctoral Program of Higher Education of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3