Role of Signaling Molecules Sodium Nitroprusside and Arginine in Alleviating Salt-Induced Oxidative Stress in Wheat

Author:

Ragaey Marwa M.ORCID,Sadak Mervat ShamoonORCID,Dawood Mona F. A.ORCID,Mousa Nermin H. S.,Hanafy Rania Samy,Latef Arafat Abdel Hamed AbdelORCID

Abstract

Nitric oxide (NO) is a well-accepted signaling molecule that has regulatory effects on plants under various stresses. Salinity is a major issue that adversely affects plant growth and productivity. The current study was carried out to investigate changes in the growth, biochemical parameters, and yield of wheat plants in response to NO donors, namely sodium nitroprusside (SNP) (2.5 and 5.0 mM) and arginine (10 and 20 mM), under two salinity levels (1.2 mM and 85.5 mM NaCl). Salinity stress significantly decreased the lengths and weights of plant parts (shoot, tiller, and root) and reduced the flag leaf area, photosynthetic pigments, indole acetic acid (IAA), and yield and its components. Moreover, salt stress induced a significant accumulation of some osmoprotectants (total soluble sugars (TSS) and amino acids, especially proline) and triggered the accumulation of hydrogen peroxide (H2O2) and lipid peroxidation in wheat leaves. In contrast, arginine and SNP treatments significantly mitigated the negative impacts of salinity on growth and productivity via enhancing photosynthetic pigments, nitrate reductase, phenolic compounds, IAA, TSS, free amino acids, and proline. In addition, SNP and arginine potentially reduced oxidative damage by decreasing H2O2 and lipid peroxidation through the induction of antioxidant enzymes. The individual amino acid composition of wheat grains under the interactive effect of salinity and NO sources has been scarcely documented until now. In this study, the NO sources restrained the reduction in essential amino acids (isoleucine and lysine) of wheat grains under salinity stress and further stimulated the contents of non-essential and total aromatic amino acids. Interestingly, the applied protectants recovered the decrease in arginine and serine induced by salinity stress. Thus, SNP or arginine at the levels of 5.0 and 20 mM, respectively, had a profound effect on modulating the salt stress of wheat throughout the life cycle.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3