Genomic Characteristics of Elite Maize Inbred Line 18-599 and Its Transcriptional Response to Drought and Low-Temperature Stresses

Author:

Cao Yang,Qu Jingtao,Yu HaoqiangORCID,Yang Qingqing,Li Wanchen,Fu Fengling

Abstract

Elite inbred line 18-599 was developed via triple test cross from introduced hybrid P78599 and used as parents of dozens of maize hybrids adapting to the diverse ecological conditions of the maize ecological region in Southwest China. In this study, its genomic DNA was resequenced and aligned with the B73 genome sequence to identify single nucleotide polymorphism (SNP), and insertion (In) and deletion (Del) loci. These loci were aligned with those between B73 and 1020 inbred lines in the HapMap database to identify specific variation loci of 18-599. The results showed that there were 930,439 specific SNPs and 358,750 InDels between 18-599 and the 1020 lines. In total, 21,961 of them showed significant impacts on the functions of 12,297 genes, such as frameshift, change of splicing site, stop gain, change of start site, and stop loss. Phylogenetic analysis showed that 18-599 was closely related to inbred lines ZEAxujRAUDIAAPE and 2005-4, but far from some inbred lines directly isolated from P78599. This result indicated that 18-599 not only pyramided the elite genes of P78599, but also acquired genetic divergence during the repetitive backcrosses of triple test cross to confer its elite agronomic characteristics. Subsequently, the RNA of 18-599 was sequenced. The aligned 9713 and 37,528 of the 165,098 unigenes were screened and aligned with annotated transcripts of the B73 genome differentially expressed under drought and low-temperature stress, respectively, and their functions were involved in the responses to these stresses. The quantitative PCR results of fourteen random genes verified the RNA sequencing results. These findings suggest that the transcriptional responses of many resistance-related genes were an important mechanism for 18-599 to adapt to diverse ecological conditions.

Funder

National Natural Science Foundation of China

the Science and Technology Bureau of Chengdu

the Department of Science and Technology of Sichuan Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference62 articles.

1. Sprague, G.F., and Dudley, J.W. (1988). Corn and Corn Improvement, American Society of Agronomy. [3rd ed.].

2. Methods used in developing maize inbreds;Maydica,1990

3. Genetic improvement of maize yields;Adv. Agron.,1991

4. Liu, J.L. (2002). Maize Breeding, China Agriculture Press. [2nd ed.].

5. A review on the germplasm bases of the main corn hybrids in China;Sci. Agric. Sin.,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3