Abstract
The Colorado potato beetle (CPB) is a serious pest of economically important Solanaceae species. The use of essential oil compounds in pest management has been proposed as an alternative to harmful chemical insecticides that disturb human health and ecosystem functioning. We examined the antifeedant activity of three concentrations (0.125%, 0.25% and 0.5%) of pure camphor and a thujone-camphor mixture against 3rd instar larvae and adults. Their efficacy was evaluated according to the degree of leaf damage and avoidance of treated leaves by the CPB. Treatment of potato leaves significantly reduced leaf damage compared to the control. Leaf protection increased at higher concentrations of the examined compounds. Camphor was more effective against larvae and the thujone-camphor mixture was more effective against adults. Additionally, adults moved faster towards the control leaf disc in the two-choice olfactometer assay if an alternative disc was treated with a thujone-camphor mixture, whereas larvae responded similarly to the two potential repellents. However, after contact with the leaf disc treated with the highest compound concentration, the larvae escaped faster from the thujone-camphor mixture than from pure camphor. In conclusion, both examined compounds are promising eco-friendly antifeedants, but their efficacy depends on the developmental stage of the beetle, compound type and applied concentration.
Funder
Ministry of Science, Technological Development and Innovation of the Republic of Serbia
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference124 articles.
1. Changing role of insecticides in crop protection;Metcalf;Ann. Rev. Entomol.,1980
2. Impact of pesticides use in agriculture: Their benefits and hazards;Aktar;Interdiscip. Toxicol.,2009
3. Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., and Phung, D.T. (2021). Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health, 18.
4. Insect resistance to insecticides;Metcalf;Pestic. Sci.,1989
5. The global status of insect resistance to neonicotinoid insecticides;Bass;Pestic. Biochem. Phys.,2015
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献