Abstract
Losses caused by phytoparasitic nematodes in crops depend directly on their soil densities at the start of the crop, so reducing their populations before planting is the main aim of nematological management. Efficacies in reducing Meloidogyne soil populations of soil disinfestation methods, such as agrochemicals, botanicals, or biosolarization were estimated on multiple field trials conducted over fourteen years in intensive horticultural crops. Soil nematode populations were reduced by 87 to 78% after fumigation with 1,3-dichloropropene + chloropicrin and dimethyl-disulphide, respectively. Non-fumigant nematicides such as azadirachtin, dazomet, fenamiphos, fluopyram, fosthiazate, metam-sodium, and oxamyl showed efficacies ranging from 51 to 64%, whereas the efficacy of natural products, such as abamectin, garlic extracts, or essential oils was 41 to 48%. Biosolarization with chicken manure had an efficacy of 73%. An economic cost-benefit study of nematode management methods was performed for seven vegetable–M. incognita pathosystems. Fumigation with 1,3-dichloropropene + chloropicrin and biosolarization with chicken manure were the only treatments able to reduce RKN populations above 1000 and 750 J2 per 100 cm3 of soil, respectively, to levels below the nematode economic damage threshold, keeping profitability. Fumigation was able to manage RKN soil densities up to 350 J2 per 100 cm3 of soil in most susceptible crops as aubergine or cucumber and up to 1000 J2 per 100 cm3 of soil for more tolerant crops, such as other cucurbits, pepper, or tomato. Other nematicidal treatments were not able to reduce RKN populations above 200–300 J2/100 cm3 of soil below the economic thresholds but were profitable when RKN densities were below the limits of 200–300 J2/100 cm3 of soil.
Funder
Andalusian Institute of Agricultural and Fisheries Research and Training
FEDER funds from the European Union
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics