Abstract
Genome-wide association study (GWAS) of six forage traits using whole-genome sequencing data generated from 301 ramie accessions found that traits were continuously distributed; the maximum variant coefficient was fresh weight per clump (FWPC) (2019) and individual plant height (IPH) (2019) minimum. Correlation analysis demonstrated that 2019 and 2020 results were similar; all traits were correlated. GWAS analysis demonstrated that six traits exhibited consistent and precise association signals. Of the latter, 104 were significant and detected in 43 genomic regions. By screening forage trait-associated single nucleotide polymorphisms and combining Manhattan map with genome annotation, signals were categorized according to functional annotations. One loci associated with fresh weight per plant (FWP) (chromosome 5; Bnt05G007759), two associated with FWPC (chromosome 13; Bnt13G018582, and Bnt13G018583), and two associated with leaf dry weight per plant (LDWP) and dry weight per plant (DWP) (chromosome 4; Bnt04G005779 and Bnt04G005780), were identified. We describe forage trait candidate genes that are highly correlated with FWP and FWPC; Bnt05G007759 may be involved in nitrogen metabolism, while Bnt13G018582 and Bnt13G018583 may encode TEOSINTE branch 1/CYCLOIDEA/proliferating cytokine 1 (TCP) domains. Bnt04G005779 and Bnt04G005780, which may regulate growth and development, are highly related to LDWP and DWP. These genomic resources will provide a basis for breeding varieties.
Funder
Supported by China Agriculture Research System of MOF and MARA
National Natural Science Foundation of China
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献