Genome-Wide Association Study of Six Forage Traits in Ramie (Boehmeria nivea L. Gaud)

Author:

Bai Xuehua,Wang Xin,Wang Yanzhou,Wei Yiping,Fu Yafen,Rao Jing,Ma Yonghong,Zeng Zheng,Li Fu,Wang ManshengORCID,Zhu SiyuanORCID

Abstract

Genome-wide association study (GWAS) of six forage traits using whole-genome sequencing data generated from 301 ramie accessions found that traits were continuously distributed; the maximum variant coefficient was fresh weight per clump (FWPC) (2019) and individual plant height (IPH) (2019) minimum. Correlation analysis demonstrated that 2019 and 2020 results were similar; all traits were correlated. GWAS analysis demonstrated that six traits exhibited consistent and precise association signals. Of the latter, 104 were significant and detected in 43 genomic regions. By screening forage trait-associated single nucleotide polymorphisms and combining Manhattan map with genome annotation, signals were categorized according to functional annotations. One loci associated with fresh weight per plant (FWP) (chromosome 5; Bnt05G007759), two associated with FWPC (chromosome 13; Bnt13G018582, and Bnt13G018583), and two associated with leaf dry weight per plant (LDWP) and dry weight per plant (DWP) (chromosome 4; Bnt04G005779 and Bnt04G005780), were identified. We describe forage trait candidate genes that are highly correlated with FWP and FWPC; Bnt05G007759 may be involved in nitrogen metabolism, while Bnt13G018582 and Bnt13G018583 may encode TEOSINTE branch 1/CYCLOIDEA/proliferating cytokine 1 (TCP) domains. Bnt04G005779 and Bnt04G005780, which may regulate growth and development, are highly related to LDWP and DWP. These genomic resources will provide a basis for breeding varieties.

Funder

Supported by China Agriculture Research System of MOF and MARA

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3