Evaluating the Rhizosphere and Endophytic Microbiomes of a Bamboo Plant in Response to the Long-Term Application of Heavy Organic Amendment

Author:

Zhang Xiaoping,Huang Zhiyuan,Zhong Zheke,Li Qiaoling,Bian Fangyuan,Gao Guibin,Yang Chuanbao,Wen Xing

Abstract

Root-associated bacteria play a major role in plant health and productivity. However, how organic amendment influences root-associated bacteria is uncertain in Lei bamboo (Phyllostachys praecox) plantations. Here, we compared the rhizosphere and endophytic microbiomes in two Lei bamboo plantations with (IMS) and without (TMS) the application of organic amendment for 16 years. The results showed IMS significantly increased (p < 0.05) the relative abundance of Proteobacteria and significantly decreased (p < 0.05) the relative abundance of Acidobacteria, Bacteroidetes, and Verrucomicrobiota. The root endophytic Proteobacteria and Acidobacteria were significantly higher in abundance (p < 0.05) in the IMS than in the TMS, while Actinobacteria and Firmicutes were significantly lower in abundance. Five taxa were assigned to Proteobacteria and Acidobacteria, which were identified as keystones in the rhizosphere soil microbiome, while two species taxonomically affiliated with Proteobacteria were identified as keystones in the root endophytic microbiota, indicating this phylum can be an indicator for a root-associated microbiome in response to IMS. The soil pH, soil total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), available potassium (AK), and TOC:TP ratio were significantly correlated (p < 0.05) with the bacterial community composition of both rhizosphere soils and root endophytes. TMS increased the microbial network complexity of root endophytes but decreased the microbial network complexity of rhizosphere soil. Our results suggest IMS shapes the rhizosphere and endophytic bacterial community compositions and their interactions differently, which should be paid attention to when designing management practices for the sustainable development of forest ecosystems.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference75 articles.

1. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges

2. Cultivation techniques of early shooting and high yielding for Lei bamboo sprout;Fang;J. Zhejiang A F Univ.,1994

3. Organic mulch and fertilization affect soil carbon pools and forms under intensively managed bamboo (Phyllostachys praecox) forests in southeast China

4. Influence of mulching management on soil bacterial structure and diversity in Phyllostachys praecox stands;Zhai;Sci. Silvae Sin.,2017

5. The plant microbiome

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3