Cellular Protein Trafficking: A New Player in Low-Temperature Response Pathway

Author:

Ashraf M. Arif,Rahman AbidurORCID

Abstract

Unlike animals, plants are unable to escape unfavorable conditions, such as extremities of temperature. Among abiotic variables, the temperature is notableas it affects plants from the molecular to the organismal level. Because of global warming, understanding temperature effects on plants is salient today and should be focused not only on rising temperature but also greater variability in temperature that is now besetting the world’s natural and agricultural ecosystems. Among the temperature stresses, low-temperature stress is one of the major stresses that limits crop productivity worldwide. Over the years, although substantial progress has been made in understanding low-temperature response mechanisms in plants, the research is more focused on aerial parts of the plants rather than on the root or whole plant, and more efforts have been made in identifying and testing the major regulators of this pathway preferably in the model organism rather than in crop plants. For the low-temperature stress response mechanism, ICE-CBF regulatory pathway turned out to be the solely established pathway, and historically most of the low-temperature research is focused on this single pathway instead of exploring other alternative regulators. In this review, we tried to take an in-depth look at our current understanding of low temperature-mediated plant growth response mechanism and present the recent advancement in cell biological studies that have opened a new horizon for finding promising and potential alternative regulators of the cold stress response pathway.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3