The Effect of Soil Water Deficiency on Water Use Strategies and Response Mechanisms of Glycyrrhiza uralensis Fisch

Author:

Song KechenORCID,Hu HaiyingORCID,Xie Yingzhong,Fu Li

Abstract

We aimed to investigate the water use strategies and the responses to water shortages in Glycyrrhiza uralensis, which is a dominant species in the desert steppe. Water stress gradients included control, mild, moderate, and severe. The time intervals were 15, 30, 45, and 60 d. Our study suggested that with the aggravation of water stress intensity, the total biomass of Glycyrrhiza uralensis gradually decreased and allometric growth was preferred to underground biomass accumulation. From 30 d and mild to moderate water stress, the water potential (WP) of leaves decreased considerably compared to the CK. The relative water content (EWC) decreased over time and had a narrow range of variation. Proline (PR) was continuously increased, then declined at 45–60 d under severe and more severe water stress. The δ13C values increased in all organs, showed roots > stems > leaves. The net photosynthetic rate (Pn) and transpiration rate (Tr) decreased to varying degrees. The instantaneous water use efficiency (WUEi) and limiting value of stomata (Ls) increased continuously at first and decreased under severe water stress. Meanwhile, severe water stress triggered the most significant changes in chloroplast and guard cell morphology. In summary, Glycyrrhiza uralensis could maintain water content and turgor pressure under water stress, promote root biomass accumulation, and improve water use efficiency, a water-conservation strategy indicating a mechanism both avoidable dehydration and tolerable drought.

Funder

Haiying Hu

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3