The 5-Aminolevulinic Acid (5-ALA) Supplement Enhances PSII Photochemical Activity and Antioxidant Activity in the Late Growth Promotion of Pseudostellaria heterophylla

Author:

Ma Julin,Sun Meng,Qiu Lingling,Xie Yinfeng,Ma Yingli,Liang Wenchao

Abstract

This study focused on the physiological regulation and mechanism of exogenous 5-aminolevulinic acid (5-ALA) in the late growth of P. heterophylla. In the middle of May, different concentrations of 5-ALA (0, 10, 20, 50 mg·L−1) were sprayed on the leaves. The effects of 5-ALA on tuberous root growth, antioxidant enzyme system, gas exchange, photosynthetic pigment contents and photosynthetic characteristics were measured from 23 May to 13 June. A concentration of 20 mg·L−1 of 5-ALA led to a significant increase in the yield of fresh root and biomass allocation at 38.12% and 25.07%, respectively, in comparation with the control (0 mg·L−1). The moderate concentration of 5-ALA statistically stimulated antioxidation activities. 5-ALA treatment enhanced photosynthetic activity and reduced photodamage. Compared to the control, there were increases in the chlorophyll fluorescence parameters of P. heterophylla under 5-ALA treatment. Moreover, 20 mg·L−1 of 5-ALA significantly changed the kinetic parameters of fluorescence. It enhanced the light absorption and distribution efficiency of PSII and the activities of leaves, resulting in alleviating photoinhibition by the excess excitation energy. The correlation indicated that there was a significant positive correlation between the yield of tuberous roots and biomass allocation, Pn and catalase (CAT), and a negative correlation between the yield of tuberous roots and malondialdehyde (MDA). The appropriate 5-ALA concentration in the late growth stage of P. heterophylla effectively enhanced the net photosynthetic capacity, mainly resulting from the enhancement of PSII photochemical activity to promote the increases in excitation energy absorption, capture and electron transfer efficiency of the leaves. Finally, 5-ALA treatment can increase the photochemical activity of PSII in the whole leaf and ultimately delay the senescence of P. heterophylla.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

1. iTRAQ-Based Quantitative Proteomic Analysis of Pseudostellaria heterophylla from Geo-Authentic Habitat and Cultivated Bases;Hua;Curr. Proteom.,2019

2. Interaction of Pseudostellaria heterophylla with Quorum Sensing and Quorum Quenching Bacteria Mediated by Root Exudates in a Consecutive Monoculture System;Zhang;J. Microbiol. Biotechnol.,2016

3. Advances in chemical constituents in Pseudostellaria heterophylla;Ma;J. Anhui Agric. Univ.,2016

4. Analysis of soil microbial community structure and enzyme activities associated with negative effects of Pseudostellaria heterophylla consecutive monoculture on yield;Lin;Pak. J. Bot.,2015

5. Tan, S.Y., Cao, J., Xia, X.L., and Li, Z.H. Advances in 5-Aminolevulinic Acid Priming to Enhance Plant Tolerance to Abiotic Stress. Int. J. Mol. Sci., 2022. 23.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3