Cyclodextrins Increase Triterpene Production in Solanum lycopersicum Cell Cultures by Activating Biosynthetic Genes

Author:

Sabater-Jara Ana Belén,Marín-Marín María Jesús,Almagro Lorena,Pedreño María AngelesORCID

Abstract

In this work, Solanum lycopersicum cv. Micro-Tom suspension-cultured cells were used to analyze the effect of different elicitors including β-cyclodextrins (CD), methyl jasmonate (MJ), β-glucan (Glu) and 3-hexenol (Hex) separately and the combined treatments of CD + MJ, CD + glu and CD + Hex on triterpene compound production after 24, 72 and 96 h. Moreover, we studied the changes induced by elicitors in the expression of key biosynthetic genes to elucidate the regulation of the triterpene biosynthetic pathway. The relative abundance of the triterpene compounds identified in the extracellular medium after elicitation (squalene, fucosterol, avenasterol, β-sitosterol, cycloartenol and taraxasterol) was determined by gas chromatography coupled to mass spectrometry, and the expression level of genes in treated-cells was analyzed by real-time quantitative polymerase chain reaction (qRT-PCR). Results showed that, in CD-treated cells (CD, CD + MJ, CD + Glu, CD + Hex), specialized metabolites were accumulated mainly in the extracellular medium after 72 h of elicitation. Moreover, qRT-PCR analysis revealed that the highest triterpene levels in CD-treated cells (CD, CD + MJ, CD + Glu, CD + Hex) were highly correlated with the expression of cycloartenol synthase, 3-hydroxy-3-methylglutaryl-CoA reductase and squalene epoxidase genes at 24 h of treatment, whereas the expression of sterol methyltransferase was increased at 72 h. According to our findings, CD acts as a true elicitor of triterpene biosynthesis and can promote the release of bioactive compounds from the tomato cells into the extracellular medium. The results obtained provide new insights into the regulation of the triterpene metabolic pathway, which might be useful for implementing metabolic engineering techniques in tomato.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3