Comparative Study of Temporal Changes in Pigments and Optical Properties in Sepals of Helleborus odorus and H. niger from Prebloom to Seed Production

Author:

Grašič MatejaORCID,Dacar Maja,Gaberščik Alenka

Abstract

Helleborus niger is an evergreen species, while H. odorus is an herbaceous understorey species. They both develop flowers before the forest canopy layer closes. Their sepals remain after flowering and have multiple biological functions. To further elucidate the functions of sepals during flower development, we examined their optical and chemical properties, and the photochemical efficiency of photosystem II in the developing, flowering, and fruiting flowers. Sepals of the two species differed significantly in the contents of photosynthetic pigments and anthocyanins, but less in the UV-absorbing substances’ contents. Significant differences in photosynthetic pigment contents were also revealed within different developmental phases. The sepal potential photochemical efficiency of photosystem II was high in all developmental phases in H. odorus, whereas in H. niger, it was initially low and later increased. In the green H. odorus sepals, we obtained typical green leaf spectra with peaks in the green and NIR regions, and a low reflectance and transmittance in the UV region. On the other hand, in the white H. niger sepals in the developing and flowering phases, the response was relatively constant along the visible and NIR regions. Pigment profiles, especially chlorophylls, were shown to be important in shaping sepal optical properties, which confirms their role in light harvesting. All significant parameters together accounted for 44% and 34% of the reflectance and transmittance spectra variability, respectively. These results may contribute to the selection of Helleborus species and to a greater understanding of the ecological diversity of understorey plants in the forests.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3