A Possible Mode of Action of Methyl Jasmonate to Induce the Secondary Abscission Zone in Stems of Bryophyllum calycinum: Relevance to Plant Hormone Dynamics

Author:

Dziurka MichałORCID,Góraj-Koniarska JustynaORCID,Marasek-Ciolakowska Agnieszka,Kowalska Urszula,Saniewski Marian,Ueda Junichi,Miyamoto Kensuke

Abstract

Plants can react to environmental stresses through the abscission of infected, damaged, or senescent organs. A possible mode of action of methyl jasmonate (JA-Me) to induce the formation of the secondary abscission zone (SAZ) in the stems of Bryophyllum calycinum was investigated concerning plant hormone dynamics. Internode segments were prepared mainly from the second or third internode from the top of plants with active elongation. JA-Me applied to the middle of internode segments induced the SAZ formation above and below the treatment after 5–7 days. At 6 to 7 days after JA-Me treatment, the above and below internode pieces adjacent to the SAZ were excised and subjected to comprehensive analyses of plant hormones. The endogenous levels of auxin-related compounds between both sides adjacent to the SAZ were quite different. No differences were observed in the level of jasmonic acid (JA), but the contents of 12-oxo-phytodienoic acid (OPDA), a precursor of JA, and N-jasmonyl-leucine (JA-Leu) substantially decreased on the JA-Me side. Almost no effects of JA-Me on the dynamics of other plant hormones (cytokinins, abscisic acid, and gibberellins) were observed. Similar JA-Me effects on plant hormones and morphology were observed in the last internode of the decapitated growing plants. These suggest that the application of JA-Me induces the SAZ in the internode of B. calycinum by affecting endogenous levels of auxin- and jasmonate-related compounds.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference56 articles.

1. Abscission;Addicott,1982

2. Morphogenetic signals and markers in vitro and in vivo;Osborne,1993

3. Abscission of flowers and floral parts

4. Cell Separation Processes in Plants—Models, Mechanisms and Manipulation

5. Signals in abscission

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3