A Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learning

Author:

Batool DaniaORCID,Shahbaz Muhammad,Shahzad Asif Hafiz,Shaukat KamranORCID,Alam Talha MahboobORCID,Hameed Ibrahim A.ORCID,Ramzan ZeeshanORCID,Waheed Abdul,Aljuaid HananORCID,Luo Suhuai

Abstract

Tea (Camellia sinensis L.) is one of the most highly consumed beverages globally after water. Several countries import large quantities of tea from other countries to meet domestic needs. Therefore, accurate and timely prediction of tea yield is critical. The previous studies used statistical, deep learning, and machine learning techniques for tea yield prediction, but crop simulation models have not yet been used. However, the calibration of a simulation model for tea yield prediction and the comparison of these approaches is needed regarding the different data types. This research study aims to provide a comparative study of the methods for tea yield prediction using the Food and Agriculture Organization (FAO) of the United Nations AquaCrop simulation model and machine learning techniques. We employed weather, soil, crop, and agro-management data from 2016 to 2019 acquired from tea fields of the National Tea and High-Value Crop Research Institute (NTHRI), Pakistan, to calibrate the AquaCrop simulation model and to train regression algorithms. We achieved a mean absolute error (MAE) of 0.45 t/ha, a mean squared error (MSE) of 0.23 t/ha, and a root mean square error (RMSE) of 0.48 t/ha in the calibration of the AquaCrop model and, out of the ten regression models, we achieved the lowest MAE of 0.093 t/ha, MSE of 0.015 t/ha, and RMSE of 0.120 t/ha using 10-fold cross-validation and MAE of 0.123 t/ha, MSE of 0.024 t/ha, and RMSE of 0.154 t/ha using the XGBoost regressor with train test split. We concluded that the machine learning regression algorithm performed better in yield prediction using fewer data than the simulation model. This study provides a technique to improve tea yield prediction by combining different data sources using a crop simulation model and machine learning algorithms.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3