Comparative Transcriptome Analysis of Two Sugarcane Cultivars in Response to Paclobutrazol Treatment

Author:

Zhang Ronghua,Li HaibiORCID,Gui Yiyun,Wei Jinju,Zhu Kai,Zhou Hui,Lakshmanan PrakashORCID,Mao Lianying,Lu Manman,Liu Junxian,Que YouxiongORCID,Li Song,Liu Xihui

Abstract

Sugarcane is an important crop across the globe, and the rapid multiplication of excellent cultivars is an important object of the sugarcane industry. As one of the plant growth regulators, paclobutrazol (PBZ) has been frequently used in the tissue culture of sugarcane seedlings. However, little is known about the molecular mechanisms of response to PBZ in this crop. Here, we performed a comparative transcriptome analysis between sensitive (LC05−136) and non−sensitive (GGZ001) sugarcane cultivars treated by PBZ at three time points (0 d, 10 d, and 30 d) using RNA sequencing (RNA−Seq). The results showed that approximately 70.36 Mb of clean data for each sample were generated and assembled into 239,212 unigenes. A total of 6108 and 4404 differentially expressed genes (DEGs) were identified within the sensitive and non−sensitive sugarcane cultivars, respectively. Among them, DEGs in LC05−136 were most significantly enriched in the photosynthesis and valine, leucine and isoleucine degradation pathways, while in GGZ001, DEGs associated with ion channels and plant–pathogen interaction were mainly observed. Notably, many interesting genes, including those encoding putative regulators, key components of photosynthesis, amino acids degradation and glutamatergic synapse, were identified, revealing their importance in the response of sugarcane to PBZ. Furthermore, the expressions of sixteen selected DEGs were tested by quantitative reverse transcription PCR (RT−qPCR), confirming the reliability of the RNA−seq data used in this study. These results provide valuable information regarding the transcriptome changes in sugarcane treated by PBZ and provide an insight into understanding the molecular mechanisms underlying the resistance to PBZ in sugarcane.

Funder

National Natural Science Foundation of China

Regional Foundation of Guangxi

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3