Using Trait-Based Methods to Study the Response of Grassland to Fertilization in the Grassland in Semiarid Areas in the Loess Plateau of China

Author:

Yang Yuting,Chen Zhifei,Xu BingchengORCID,Wei Jiaqi,Zhu Xiaoxu,Yao Hongbin,Wen ZhongmingORCID

Abstract

Grassland is the dominant vegetation type in the Loess Plateau, and grassland productivity and processes are limited by nitrogen (N) and phosphorus (P). Studies have shown that productivity would change following fertilization in the grassland. The response of productivity to fertilization mainly depends on the dominant species traits. Trait-based methods provide a useful tool for explaining the variations in grassland productivity following fertilization. However, the relative contribution of plant functional traits to grassland productivity under N and P addition in the Loess Plateau is not clear. We measured aboveground biomass (AGB) and leaf N content (LN), leaf P content (LP), leaf N/P ratio (LN/P), specific leaf area (SLA), leaf tissue density (LTD), leaf dry matter content (LDMC), and maximum plant height (Hmax) to study how these plant functional traits regulate the relative biomass of different species and grassland productivity following fertilization. Our results showed, that under different nutrient addition levels, the linkages between plant functional traits and the relative biomass of different species were different. Community AGB was positively related to community−weighted mean LN (CWM_LN), CWM_LN/P, CWM_SLA, and CWM_Hmax, but negatively related to CWM_LTD and CWM_LDMC. Dominant species traits largely determined grassland productivity, in line with the mass ratio hypothesis. These findings further highlight the close linkages between community-level functional traits and grassland productivity. Our study contributes to the mechanisms underlying biodiversity–ecosystem function relationships and has significance for guiding semiarid grassland management.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3