Genetic Behavior of Tomato (Solanum lycopersicum L.) Germplasm Governing Heavy Metal Tolerance and Yield Traits under Wastewater Irrigation

Author:

Raja Shameem,Farhat Fozia,Tariq Arneeb,Malik Zaffar,Aziz Rana BadarORCID,Kamran MuhamamdORCID,Elsharkawy Mohsen MohamedORCID,Ali Asif,Al-Hashimi Abdulrahman,Elshikh Mohamed S.ORCID

Abstract

Wastewater irrigation is a substitute for surface water scarcity, but traces of heavy metals (HMs) result in deleterious implications for soil, crop productivity, and in humans. Crops presenting HMs tolerance in genetic behavior are important for producing tolerant genotypes cultivated under wastewater irrigation. In the first part of this experiment, the results obtained previously are re-assessed in a hydroponic system and similar patterns and concentrations of HMs are found in different tomato organs. Following this trial, the tomato’s (Solanum lycopersicum L.) genetic basis of traits conferring HMs tolerance and yield are assessed when irrigated with waste or canal water. The North Carolina Mating II analysis illustrate the amount of gene action, nature, and inheritance pattern. Genetic components depict the involvement of non-additive, additive, and maternal genetic effects in HMs tolerance inheritance and yield. A noticeable increase in cumulative additive variance for the number of flowers (11,907.2) and the number of fruits (10,557.9) is recorded for tomato plants irrigated with wastewater, illustrating additive gene action. However, female and male (MSf/MSm) square ratios also show an association with cytoplasmic inheritance. For HMs tolerance, both additive and dominant variances appeared to be significant; cumulative dominance variance (4.83, 16.1, 4.69, 76.95, and 249.37) is higher compared to additive variance (0.18, 2.36, 0.19, −0.27, and 14.14) for nickel (Ni), chromium (Cr), lead (Pb), manganese (Mn), and zinc (Zn), respectively, indicating dominance gene action. The genotype RIOGRANDI accumulated and translocated fewer HMs to the aerial part of the plant compared to CLN-2418A and PB-017906, thus presenting a tolerant tomato genotype according to the hydroponic experiment. This also exhibited a differential pattern of gene action for HMs tolerance, suggesting that genotypes possess significant differences for HMs tolerance.

Funder

King Saud University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3