Cell Wall Components and Extensibility Regulate Root Growth in Suaeda salsa and Spinacia oleracea under Salinity

Author:

Liu JiaORCID,Shao Yang,Feng Xiaohui,Otie Victoria,Matsuura Asana,Irshad Muhammad,Zheng Yuanrun,An PingORCID

Abstract

Understanding the role of root cell walls in the mechanism of plant tolerance to salinity requires elucidation of the changes caused by salinity in the interactions between the mechanical properties of the cell walls and root growth, and between the chemical composition of the cell walls and root growth. Here, we investigated cell wall composition and extensibility of roots by growing a halophyte (Suaeda salsa) and a glycophyte (Spinacia oleracea) species under an NaCl concentration gradient. Root growth was inhibited by increased salinity in both species. However, root growth was more strongly reduced in S. oleracea than in S. salsa. Salinity reduced cell wall extensibility in S. oleracea significantly, whereas treatment with up to 200 mM NaCl increased it in S. salsa. Meanwhile, S. salsa root cell walls exhibited relatively high cell wall stiffness under 300 mM NaCl treatment, which resist wall deformation under such stress conditions. There was no decrease in pectin content with salinity treatment in the cell walls of the elongation zone of S. salsa roots. Conversely, a decrease in pectin content was noted with increasing salinity in S. oleracea, which might be due to Na+ accumulation. Cellulose content and uronic acid proportions in pectin increased with salinity in both species. Our results suggest that (1) cell wall pectin plays important roles in cell wall extension in both species under salinity, and that the salt tolerance of glycophyte S. oleracea is affected by the pectin; (2) cellulose limits root elongation under saline conditions in both species, but in halophytes, a high cell wall content and the proportion of cellulose in cell walls may be a salt tolerance mechanism that protects the stability of cell structure under salt stress; and (3) the role of the cell wall in root growth under salinity is more prominent in the glycophyte than in the halophyte.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3