Yield Response of Spring Maize under Future Climate and the Effects of Adaptation Measures in Northeast China

Author:

Koimbori Jackson K.ORCID,Wang Shuai,Pan Jie,Guo Liping,Li KuoORCID

Abstract

Agriculture production has been found to be the most sensitive sector to climate change. Northeast China (NEC) is one of the world’s major regions for spring maize production and it has been affected by climate change due to increases in temperature and decreases in sunshine hours and precipitation levels over the past few decades. In this study, the CERES-Maize model-v4.7 was adopted to assess the impact of future climatic change on the yield of spring maize in NEC and the effect of adaptation measures in two future periods, the 2030s (2021 to 2040) and the 2050s (2041 to 2060) relative to the baseline (1986 to 2005) under RCP4.5 and RCP8.5 scenarios. The results showed that increased temperatures and the decreases in both the precipitation level and sunshine hours in the NEC at six representative sites in the 2030s and 2050s periods based on RCP4.5 and RCP8.5 climate scenarios would shorten the maize growth durations by (1–38 days) and this would result in a reduction in maize yield by (2.5–26.4%). Adaptation measures, including altered planting date, supplemental irrigation and use of cultivars with longer growth periods could offset some negative impacts of yield decrease in maize. For high-temperature-sensitive cultivars, the adoption of early planting, cultivar change and adding irrigation practices could lead to an increase in maize yield by 23.7–43.6% and these measures were shown to be effective adaptation options towards reducing yield loss from climate change. The simulation results exhibited the effective contribution of appropriate adaptation measures in eliminating the negative impact of future climate change on maize yield.

Funder

National Key R&D program of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3