Abstract
Plant growth-promoting rhizobacteria (PGPR) can promote plant growth through mechanisms such as mineral phosphates solubilization, biological N2 fixation and siderophores and phytohormones production. The present work aims to evaluate the physiological fitness improvement by PGPR in Halimione portulacoides under mild and severe salt stress. PGPR-inoculated plants showed improved energy use efficiencies, namely in terms of the trapped and electron transport energy fluxes, and reduced energy dissipation. Allied to this, under mild stress, inoculated plants exhibited a significant reduction of the Na and Cl root concentrations, accompanied by a significant increase in K and Ca leaf content. This ion profile reshaping was intrinsically connected with an increased leaf proline content in inoculated plants. Moreover, bioaugmented plants showed an increased photoprotection ability, through lutein and zeaxanthin leaf concentration increase, allowing plants to cope with potentially photoinhibition conditions. Reduced Na leaf uptake in inoculated plants, apparently reduced the oxidative stress degree as observed by the superoxide dismutase and peroxidase activity reduction. Additionally, a reduced lipid peroxidation degree was observed in inoculated plants, while compared to their non-inoculated counterparts. These results, point out an important role of bioaugmentation in promoting plant fitness and improving salt tolerance, with a great potential for applications in biosaline agriculture and salinized soil restoration.
Funder
Fundação para a Ciência e Tecnologia
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献