Flooding and Soil Properties Control Plant Intra- and Interspecific Interactions in Salt Marshes

Author:

Pellegrini ElisaORCID,Incerti GuidoORCID,Pedersen OleORCID,Moro Natasha,Foscari Alessandro,Casolo Valentino,Contin MarcoORCID,Boscutti FrancescoORCID

Abstract

The stress gradient hypothesis (SGH) states that plant-plant interactions shift from competition to facilitation in increasing stress conditions. In salt marshes, edaphic properties can weaken the application of the SGH by amplifying the intensity of flooding and controlling plant zonation. We identified facilitative and competitive interactions along flooding gradients and tested the role of edaphic properties in exacerbating stress and shaping plant-plant interactions. Morphological traits of two target halophytes (Limonium narbonense and Sarcocornia fruticosa), flooding intensity, soil texture and soil organic C were recorded. The relative plant fitness index was assessed for the two species based on the relative growth in plurispecific rather than monospecific plant communities. Plant fitness increased with increasing stress supporting the SGH. L. narbonense showed larger fitness in plurispecific stands whereas S. fruticosa performed better in conspecific stands. Significant intra- or interspecific interactions were observed along the stress gradient defined by the combination of flooding and clay content in soil. When considering the limited soil organic C as stressor, soil properties were more important than flooding in defining plant-plant interactions. We highlight the need for future improvements of the SGH approach by including edaphic stressors in the model and their possible interactions with the main abiotic drivers of zonation.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3