Nickel Toxicity Interferes with NO3−/NH4+ Uptake and Nitrogen Metabolic Enzyme Activity in Rice (Oryza sativa L.)

Author:

Rizwan Muhammad,Usman Kamal,Alsafran Mohammed,Jabri Hareb Al,Samreen Tayyaba,Saleem Muhammad HamzahORCID,Tu Shuxin

Abstract

The excessive use of nickel (Ni) in manufacturing and various industries has made Ni a serious pollutant in the past few decades. As a micronutrient, Ni is crucial for plant growth at low concentrations, but at higher concentrations, it can hamper growth. We evaluated the effects of Ni concentrations on nitrate (NO3−) and ammonium (NH4+) concentrations, and nitrogen metabolism enzyme activity in rice seedlings grown in hydroponic systems, using different Ni concentrations. A Ni concentration of 200 μM significantly decreased the NO3− concentration in rice leaves, as well as the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthetase (GOGAT), respectively, when compared to the control. By contrast, the NH4+ concentration and glutamate dehydrogenase (GDH) activity both increased markedly by 48% and 46%, respectively, compared with the control. Furthermore, the activity of most active aminotransferases, including glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT), was inhibited by 48% and 36%, respectively, in comparison with the control. The results indicate that Ni toxicity causes the enzymes involved in N assimilation to desynchronize, ultimately negatively impacting the overall plant growth.

Funder

Guangxi Major Special Project of Science and Technique

National Key Research and Development Program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3