Evaluation of Nitrogen Fertilizer Fates and Related Environmental Risks for Main Cereals in China’s Croplands from 2004 to 2018

Author:

Song DapingORCID,Jiang Rong,Fan Daijia,Zou Guoyuan,Du Lianfeng,Wei Dan,Guo Xuan,He Wentian

Abstract

Assessment of the nitrogen (N) inputs and outputs in croplands would help effectively manage the distribution of N to improve crop growth and environmental sustainability. To better understand the N flow of the main cereal systems in China, soil N balance, N use efficiency (NUE), N losses and the potential environmental impacts of maize, wheat and rice cropping systems were estimated at the regional and national scales from 2004 to 2018. Nationally, the soil N balance (N inputs—N outputs) of maize, wheat, single rice and double rice decreased by 28.8%,13.3%, 30.8% and 34.1% from 2004–2008 to 2014–2018, equivalent to an average of 33.3 to 23.7 kg N ha−1, 82.4 to 71.4 kg N ha−1, 93.6 to 64.8 kg N ha−1 and 51.8 to 34.1 kg N ha−1, respectively. The highest soil N balance were observed in Southeast (SE) region for maize and double rice, North central (NC) region for wheat single rice and Northwest region for wheat, whereas Northeast (NE) region had the lowest N balance for all crops. The NUE increased from 49.8%, 41.2%, 49.7% and 53.7% in 2004–2008 to 54.8%, 45.9%, 55.5% and 56.5% in 2014–2018 for maize, wheat, single rice and double rice, respectively. The fertilizer N losses (i.e., N2O emission, NO emission, N2 emission, NH3 volatilization, N leaching and N runoff) were estimated as 43.7%, 38.3%, 40.2% and 36.6% of the total N inputs for maize, wheat, single rice and double rice, respectively in 2014–2018. Additionally, the highest global warming potential and acidification effects were found in NE and NC regions for maize, NC region for wheat, the middle and lower reaches of Yangtze River for single rice and SE region for double rice, respectively. The highest risk of water contamination by N leaching and surface runoff was observed in NC region for all crops mainly due to high N fertilizer input. Furthermore, the dynamics of N balance for all crops were closely tied with grain yields, except for single rice, the N balance of which was mainly correlated with N fertilizer input. Our results could help researchers and policy makers effectively establish optimized fertilization strategies and adjust the regional allocation of grain cropping areas in response to environmental risks and climate change caused by food crop cultivation in China.

Funder

Ministry of Science and Technology

Beijing Academy of Agriculture and Forestry Sciences

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3