Application of Rhizobacteria, Paraburkholderia fungorum and Delftia sp. Confer Cadmium Tolerance in Rapeseed (Brassica campestris) through Modulating Antioxidant Defense and Glyoxalase Systems

Author:

Raihan Md. Rakib HossainORCID,Rahman MiraORCID,Mahmud Nur UddinORCID,Adak Malay Kumar,Islam TofazzalORCID,Fujita Masayuki,Hasanuzzaman MirzaORCID

Abstract

We investigated the role of two different plant growth-promoting probiotic bacteria in conferring cadmium (Cd) tolerance in rapeseed (Brassica campestris cv. BARI Sarisha-14) through improving reactive oxygen species scavenging, antioxidant defense, and glyoxalase system. Soil, as well as seeds of rapeseed, were separately treated with probiotic bacteria, Paraburkholderia fungorum BRRh-4 and Delftia sp. BTL-M2. Fourteen-day-old seedlings were exposed to 0.25 and 0.5 mM CdCl2 for two weeks. Cadmium-treated plants resulted in a higher accumulation of hydrogen peroxide, increased lipid peroxidation, electrolyte leakage, chlorophyll damage, and impaired antioxidant defense and glyoxalase systems. Consequently, it reduced plant growth and biomass production, and yield parameters. However, probiotic bacteria-inoculated plants significantly ameliorated the Cd toxicity by enhancing the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, glutathione peroxidase, and catalase) and glyoxalase enzymes (glyoxalase I and glyoxalase II) which led to the mitigation of oxidative damage indicated by reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage that ultimately improved growth, physiology, and yield of the bacterial inoculants rapeseed plants. When taken together, our results demonstrated the potential role of the plant probiotic bacteria, BRRh-4 and BTL-M2, in mitigating the Cd-induced damages in rapeseed plants.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3