High Temperature Alters Leaf Lipid Membrane Composition Associated with Photochemistry of PSII and Membrane Thermostability in Rice Seedlings

Author:

Prasertthai Paphitchaya,Paethaisong Warunya,Theerakulpisut Piyada,Dongsansuk Anoma

Abstract

Rice cultivated in the tropics is exposed to high temperature (HT) stress which threatens its growth and survival. This study aimed at characterizing the HT response in terms of PSII efficiency and membrane stability, and to identify leaf fatty acid changes that may be associated with HT tolerance or sensitivity of rice genotypes. Twenty-eight-day-old seedlings of two Thai rice cultivars (CN1 and KDML105), a standard heat tolerance (N22), and a heat sensitive (IR64) rice genotype were treated at 42 °C for 7 days. Under HT, N22 showed the highest heat tolerance displaying the lowest increase in electrolyte leakage (EL), no increments in malondialdehyde (MDA) and stable maximum quantum yield of PSII efficiency (Fv/Fm). Compared to KDML105 and IR64, CN1 was more tolerant of HT, showing a lower increase in EL and MDA, and less reduction in Fv/Fm. N22 and CN1 showed a higher percentage reduction of unsaturated fatty acids (C18:2 and C18:3), which are the major components of the thylakoid membrane, rendering the optimum thylakoid membrane fluidity and intactness of PSII complex. Moreover, they exhibited sharp increases in long-chain fatty acids, particularly C22:1, while the heat sensitive IR64 and KDML105 showed significant reductions. Dramatic increases in long-chain fatty acids may lead to cuticular wax synthesis which provides protective roles for heat tolerance. Thus, the reduction in unsaturated fatty acid composition of the thylakoid membrane and dramatic increases in long-chain fatty acids may lead to high photosynthetic performance and an enhanced synthesis of cuticular wax which further provided additional protective roles for heat tolerance ability in rice.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3