Biophysical Equations and Pressure Probe Experiments to Determine Altered Growth Processes after Changes in Environment, Development, and Mutations

Author:

Ortega Joseph K. E.ORCID

Abstract

Expansive growth is a culmination of many biological processes. It is fundamental to volume growth, development, morphogenesis, sensory responses, and environmental responses of plants, fungi, and algae. Expansive growth of walled cells and plant tissue can be accurately described by a set of three global biophysical equations that model the biophysical processes of water uptake, wall deformation, and turgor pressure. Importantly, these biophysical equations have been validated with the results of pressure probe experiments. Here, a systematic method (scheme) is presented that iterates between analyses with the biophysical equations and experiments conducted with the pressure probe. This iterative scheme is used to determine altered growth processes for four cases; two after changes in the environment, one after a change in development, and another after changes by mutation. It is shown that this iterative scheme can identify which biophysical processes are changed, the magnitude of the changes, and their contribution to the change in expansive growth rate. Dimensionless numbers are employed to determine the magnitude of the changes in the biophysical processes. The biological meaning and implication of the biophysical variables in the biophysical equations are discussed. Further, additional sets of global biophysical equations are presented and discussed.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference41 articles.

1. Governing equations for plant cell growth

2. Mechanics and modeling of plant cell growth

3. Plant Cell Growth in Tissue

4. Pressure probe techniques: Basic principles and application to studies of water and solute relations at the cell, tissue and organ level;Steudle,1993

5. Dimensional analysis of expansive growth of cells with walls;Ortega;Res. Rev. J. Bot. Sci.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3